

Q8 Vermeer WDA 150

Description

Paper machine circulating oil based on ash-free technology

Application

• Lubrication of industrial paper machine circulating systems for the wet- and dry-end. Q8 Vermeer WDA is based on the latest generation additive technology for applications that require a lower impact of chemical contaminants in water treatment systems, or having specific filterability problems.

Benefits

- Excellent and well balanced properties for both the wet and dry end of paper machines
- Based on ashless additive technology
- Good filterability properties
- Developed to give excellent thermal and oxidative stability
- Good protection against corrosion
- Very low deposit forming tendency
- · Outstanding water separation and air release performance
- Excellent anti-wear and EP performance
- Compatible with elastomers, plastics and process chemicals

References

• Meets the requirements of Metso Paper and Voith Paper

Properties	Method	Unit	Typical
ISO Viscosity Grade	-	-	150
Absolute Density, 15 °C	D 4052	kg/m³	887
Kinematic Viscosity, 40 °C	D 445	mm²/s	150
Kinematic Viscosity, 100 °C	D 445	mm²/s	14.70
Viscosity Index	D 2270	-	97
Flash Point	D 92	°C	262
Demulsification	D 1401	ml	40-40-0 (10)
Rust Test, Proc. A and B, 24 h	D 665	-	pass
Foam	D 892	-	
5 min blowing, seq. 1/2/3		ml	10/10/10
10 min settling, seq. 1/2/3		ml	0/0/0
Copper corrosion	D 130	-	1 a
Filterability Test	-	-	pass

The figures above are not a specification. They are typical figures obtained within production tolerances.