

Q8 da Vinci AM 4

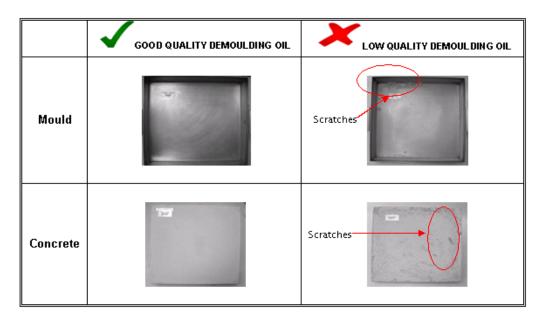
Description

A concrete mould release agent designed to give the work-piece a smooth surface finish, whilst ensuring easy release.

Application

- The Q8 da Vinci range has been specifically developed for concrete demoulding where the oil creates a layer between the concrete and the mould.
- This layer is a critical part of the process as the chemistry of the product will cause soap formations at the interface.
- Q8 da Vinci AM 4 is typically used for demoulding of prefab concrete foundation piles and on-site elements.

Benefits


- Excellent surface quality and clean mould.
- Easy to apply with spray

Q8 da Vinci AM 4 contains a special additive to prevent mist formation

- Optimization of the volume : the best surface finish are obtained at low demoulding oil concentration.
- The light colour of the Q8 da Vinci range makes it easier to inspect the quality of the moulds.

References

• Based on lab tests and customers' feedback, Q8 Oils claims that the Q8 da Vinci range provides to the concrete a smooth surface finish, without any staining or dust formation and a clean mould.

Properties	Method	Unit	Typical
Appearance, Visual	KPI 70	-	bright & clear
Absolute Density, 15 °C	D 4052	kg/m³	813
Kinematic Viscosity, 40 °C	D 445	mm²/s	4.0
Flash Point	D 92	°C	128
Pour Point	D 97	°C	-24
Total Acid Number	D 664	mg KOH/g	10.0
Rust Test, Proc. A and B, 24 h	D 665	-	pass
Biodegradability, 28 days	OECD 301 B	%	55

The figures above are not a specification. They are typical figures obtained within production tolerances.