

Q8 da Vinci Bio 5

Description

A concrete mould release agent designed to give the work-piece a smooth surface finish, whilst ensuring easy release.

Application

- The Q8 da Vinci range has been specifically developed for concrete demoulding where the oil creates a layer between the concrete and the mould.
- This layer is a critical part of the process, and Q8 da Vinci Bio 5 contains release agents whose high polarity helps reduce friction.
- Q8 da Vinci Bio 5 is typically used for:
 Immediate concrete demoulding for industrial production
 General concrete demoulding

Benefits

- Excellent surface quality and clean mould.
- Easy to apply with spray or brush
- Optimization of the volume: the best surface finish are obtained at low demoulding oil concentration.
- The light colour of the Q8 da Vinci range makes it easier to inspect the quality of the moulds.
- Q8 da Vinci Bio 5 gives excellent biodegradability: 87% in 28 days.

References

• Based on lab tests and customers' feedback, Q8 Oils claims that the Q8 da Vinci range provides to the concrete a smooth surface finish, without any staining or dust formation and a clean mould.

Properties	Method	Unit	Typical
Appearance, Visual	KPI 70	-	bright & clear
Absolute Density, 15 °C	D 4052	kg/m³	880
Kinematic Viscosity, 40 °C	D 445	mm²/s	5.0
Flash Point	D 92	°C	185
Pour Point	D 97	°C	-30
Total Acid Number	D 664	mg KOH/g	2.3
Rust Test, Proc. A and B, 24 h	D 665	-	pass
Biodegradability, 28 days	OECD 301 B	%	87

The figures above are not a specification. They are typical figures obtained within production tolerances.